Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Immunol Methods ; 495: 113071, 2021 08.
Article in English | MEDLINE | ID: covidwho-1228074

ABSTRACT

Several diagnostic tools have been developed for clinical and epidemiological assays. RT-PCR and antigen detection tests are more useful for diagnosis of acute disease, while antibody tests allow the estimation of exposure in the population. Currently, there is an urgent need for the development of diagnostic tests for COVID-19 that can be used for large-scale epidemiological sampling. Through a comprehensive strategy, potential 16 mer antigenic peptides suited for antibody-based SARS-CoV-2 diagnosis were identified. A systematic scan of the three structural proteins (S,N and M) and the non-structural proteins (ORFs) present in the SARS-CoV-2 virus was conducted through the combination of immunoinformatic methods, peptide SPOT synthesis and an immunoassay with cellulose-bound peptides (Pepscan). The Pepscan filter paper sheets with synthetic peptides were tested against pools of sera of COVID-19 patients. Antibody recognition showed a strong signal for peptides corresponding to the S, N and M proteins of SARS-CoV-2 virus, but not for the ORFs proteins. The peptides exhibiting higher signal intensity were found in the C-terminal region of the N protein. Several peptides of this region showed strong recognition with all three immunoglobulins in the pools of sera. The differential reactivity observed between the different immunoglobulin isotypes (IgA, IgM and IgG) within different regions of the S and N proteins, can be advantageous for ensuring accurate diagnosis of all infected patients, with different times of exposure to infection. Few peptides of the M protein showed antibody recognition and no recognition was observed for peptides of the ORFs proteins.


Subject(s)
COVID-19 Serological Testing/methods , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Informatics/methods , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , Computational Biology , Coronavirus M Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , Epitope Mapping , Epitopes, B-Lymphocyte/genetics , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Peptides/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Clin Chest Med ; 41(4): 605-621, 2020 12.
Article in English | MEDLINE | ID: covidwho-896784

ABSTRACT

Computer and information systems can improve occupational respiratory disease prevention and surveillance by providing efficient resources for patients, workers, clinicians, and public health practitioners. Advances include interlinking electronic health records, autocoding surveillance data, clinical decision support systems, and social media applications for acquiring and disseminating information. Obstacles to advances include inflexible hierarchical coding schemes, inadequate occupational health electronic health record systems, and inadequate public focus on occupational respiratory disease. Potentially transformative approaches include machine learning, natural language processing, and improved ontologies.


Subject(s)
Informatics/methods , Lung Diseases/diagnosis , Lung Diseases/prevention & control , Occupational Diseases/diagnosis , Occupational Diseases/prevention & control , Occupational Exposure/adverse effects , Humans , Machine Learning
3.
J Med Internet Res ; 22(8): e19799, 2020 08 27.
Article in English | MEDLINE | ID: covidwho-712977

ABSTRACT

Researchers must collaborate globally to rapidly respond to the COVID-19 pandemic. In Europe, the General Data Protection Regulation (GDPR) regulates the processing of personal data, including health data of value to researchers. Even during a pandemic, research still requires a legal basis for the processing of sensitive data, additional justification for its processing, and a basis for any transfer of data outside Europe. The GDPR does provide legal grounds and derogations that can support research addressing a pandemic, if the data processing activities are proportionate to the aim pursued and accompanied by suitable safeguards. During a pandemic, a public interest basis may be more promising for research than a consent basis, given the high standards set out in the GDPR. However, the GDPR leaves many aspects of the public interest basis to be determined by individual Member States, which have not fully or uniformly made use of all options. The consequence is an inconsistent legal patchwork that displays insufficient clarity and impedes joint approaches. The COVID-19 experience provides lessons for national legislatures. Responsiveness to pandemics requires clear and harmonized laws that consider the related practical challenges and support collaborative global research in the public interest.


Subject(s)
Betacoronavirus/pathogenicity , Computer Security/standards , Coronavirus Infections/epidemiology , Informatics/methods , Pneumonia, Viral/epidemiology , COVID-19 , Europe , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL